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0. Introduction

This paper presents a step-by-step description of our compu-
tational model of 3D shape and scene recovery. This kind of pre-
sentation was used to make it capable of serving as a tutorial for
interested readers. It is addressed primarily to psychologists, not
to machine vision researchers despite the fact that it resembles a
machine vision application. There are two obvious reasons why
it will be of interest to psychologists but not to machine vision
researchers. First, the machine vision, as well as the robotics, com-
munity is developing computational tools for object and scene
analysis that lie outside of the context of biological vision. Most of
the tools they use cannot be used tomodel human vision. They use
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non-biological sensors, such as lasers or structured light, or they
try to solve 2D vision problems, not the 3D problems facing hu-
man beings and anymachine that tries to emulate them.Wemodel
vision initiated by two cameras that are sensitive to the visible por-
tion of the electromagnetic radiant energy spectrum with the goal
of achieving a veridical recovery of 3D shapes and 3D scenes. The
machine vision and robotics communities have different goals and
use different tools to achieve them. Second, the performance of all
existing machine vision systems in object reconstruction and
recognition tasks does not even come close to human performance.
Humanperformance is somuch better than the performance of any
machine vision systemavailable today that these systems are of lit-
tle, if any, interest to psychologists. For example, state-of-the-art
machine vision systems can detect a person in an image 51.6% of
the time and a chair 23.2% of the time, according to themost recent
results of the PASCAL Visual Object Challenge, http://pascallin.ecs.
soton.ac.uk/challenges/VOC/voc2011/results/index.html. We hu-
mans detect people and chairs 100% of the time. This number,
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100%, is not even in the current vocabulary of the machine vision
communitymuch less descriptive of the performance of any vision
machine. Those of uswho talk to chairs and sit on people fair poorly
in everyday life. If a computational model cannot, at least in prin-
ciple, guarantee nearly perfect performance, it can be rejected as a
model of human vision. The computationalmodel described in this
tutorial is the first successful attempt to explain the human beings’
perception of real 3D shapes and 3D scenes based only on informa-
tion provided by one or two real 2D images. Our model builds on
several results and tools developed in the machine vision commu-
nity, but the particular choices about which tools should be used
and how they should be used were, in all cases, dictated by the
psychological plausibility of the computations. Some of the ideas
and methods presented here were developed by us. We indicate
the relevant sources whenever we used ideas or tools developed
by others.

The basic idea underlying our new approach for recovering
natural 3D scenes makes use of mechanisms employed by human
beings to recover 3D shapes from 2D images (Li, 2009; Li, Pizlo,
& Steinman, 2009; Pizlo, 2008; Pizlo, Sawada, Li, Kropatsch, &
Steinman, 2010; Sawada, 2010; Sawada & Pizlo, 2008). The novel,
critical aspect of our approach is that a priori constraints are
at least as important in 3D vision as visual data. This approach
is different from all other, more conventional approaches in
which the reconstruction of 3D shapes and 3D scenes is a
hierarchical process based on a number of independent visual
modules responsible for acquiring and combining pieces of
visual information, called ‘‘depth cues’’, e.g., texture, shading,
motion, disparity, and vergence. Our novel approach, described
with David Marr’s (1982) widely-known terminology, bypasses
a viewer-centered representation by recovering geometrical
properties of objects and their environment in an object-centered
representation. Our approach is preferable to the conventional
approach for two different, but related reasons. First, it is known
that despite the fact that the human beings’ perception of 3D
distances and 3D sizes is usually not veridical, the human being’s
perception of 3D shapes is always veridical (Li, Sawada, Shi, Kwon,
& Pizlo, 2011).1 Second, several very effective a priori constraints
for the perception of 3D shape are known, but no effective
constraints are known for the perception of the 3D distances
between pairs of 3D points. An additional advantage inheres in
starting to recover 3D scenes with 3D shapes. Starting with 3D
shapes allows the observer to ‘‘see’’ the ‘‘invisible’’ back parts
of opaque objects. Paraphrasing Bartlett (1932) to put our novel
approach into a broad historical perspective, we can say that using
3D shapes to construct 3D scenes allows an observer to actually ‘‘go
beyond the information given’’. The special role and significance of
shape in visual perception was appreciated and highlighted by the
Gestalt Psychologists almost 100 years ago, but the mathematical
and computational tools necessary to formulate their ideas and
to make use of them in computational models did not become
available until recently. This tutorial reviews several of these tools
and illustrates how they can be applied to the recovery of a natural
3D scene, like the scene shown in Fig. 1.

We prepared this tutorial because we believe that, at present,
the best way to test any theory in vision is to implement a
computational model of the underlying perceptual mechanisms
and to show that it can be used effectively by an autonomous
robotic system. This kind of robotic system acquires visual
information, and then plans and executes actions without any

1 By ‘‘veridical’’ we mean that the percept of the shape of an object agrees with
its shape in the real world. Note that we are ignoring laboratory experiments that
were designed specifically to demonstrate the failure of shape veridicality by using
degenerate shapes and/or degenerate viewing directions.
Fig. 1. Five man-made 3D objects within a natural scene and our robot (Čapek)
looking at them (the room used for robot navigation). A camera mounted on the
top of this robot provides the visual information used to guide its navigations.
An inclinometer, mounted on top of the camera, provides the robot with the
information it uses about the direction of gravity.

intervention by the designer of the system. We have succeeded in
developing a computational model that does this. It recovers a 3D
object from one of its 2D images and then uses these mechanisms
to recover naturalistic 3D scenes. These scenes permit the robot to
perform complex navigationswithout any aid from a human being,
the kind of activity previously only performed by an alert, human
being.

Note that ours is not the approach most often used by others
working in vision today. Vision researchers, more often than
not, simply state what they call a ‘‘theory’’ in plain English
and go on to describe some qualitative aspects of what they
believe to be a potential perceptual mechanism. Even when a
contemporary vision researcher has actually used a mathematical
or computational model, more often than not, it was tested with
synthetic images or only with a few hand-picked real images. Such
tentative and partial approaches to providing an explanation of
a limited visual process was justifiable some years ago but we
believe that we have reached the point at which vision researchers
should be much more ambitious. A nearly complete, working
theory of at least some particularly significant aspect of visual
processing should be provided now that this is no longer beyond
reach. Meeting such expectations can be best served by verifying
that any current theory meets at least two criteria, namely, that:
(i) it is relatively complete, and (ii) it has no implicit or unjustified
explicit assumptions. The best way to do this is to build a machine
that can actually see as we do, a more complex act than is
commonly assumed.

Traditionally, the visual and the motor systems have been
treated as separate, independent modules that could be and
were studied separately. But the fact that they are not nearly
independent and that they can, and should be, studied as they
work together, rather than separately, was emphasized by Dewey
(1896) more than 100 years ago. He emphasized that perception
is not, and should not be treated as, a passive process. Perception
is only one part of a closed, continuously active ‘‘reflex arc’’,
actually more like a circle or a loop, called the ‘‘perception–action
cycle’’, in which perception and motor action follow one another
and interact continuously in everyday life. This observation is not
only very old, it was picked up, promulgated, mulled over and
elaborated by many others since it was proposed, most notably
by Hebb (1949) and by Gibson (1966), who attempted to include
this interaction in their ‘‘verbal models’’ of what is now often
referred to as ‘‘ecologically-valid vision’’. Note that the integration
of vision and action, originally proposed by Dewey, who credits
James (1890) for pointing him in this direction,makes a lot of sense,
despite its neglect in most contemporary work, for at least two
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reasons. First, an observer must actively seek information about
the environment by using more than one viewing direction. The
observer must do this to determine whether his initial viewing
direction provided all of the information required to perceive the
scene veridically. Second, the observer needs veridical information
about the environment because it is essential for the efficient
planning and successful execution of the specific behavioral acts
that will achieve the desired goals. We recently showed that
human observers can reconstruct the 3D shape of an indoor scene,
like the scene shown in Fig. 1, from a single viewing position
very accurately andprecisely (Kwon, 2012). Binocular performance
was slightly better than monocular performance, and there was
no evidence of systematic distortions of visual space. The reader
will surely agree that the best, perhaps even the only, way to
study such complex, but very natural, interactive processing is to
develop a model that sees and acts, as the human being does, and
furthermore, that this model should be realized in the form of a
mobile robot now that they are available ‘‘off-the-shelf’’. Note that
this proposal is not novel. It was first proposed long before its
implementationwas viewed as either possible or imminent. It goes
back at least to Richard Feynman, who is reported as having said
‘‘what I cannot create I don’t understand’’ and/or was proposed
at the early stages of cognitive science by Miller, Galanter, and
Pribram (1960) who said that ‘‘The creation of a model is proof of
the clarity of the vision. If you understand how a thing works well
enough to build your own, then your understandingmust be nearly
perfect (p. 46)’’. So, all we are really saying here, is that it is time
to put these words into practice.We prepared this tutorial tomake
it easier for individuals, who share this goal, to implement vision
theories in a machine.

The tutorial begins with a description of why, as well as how, a
camera should be calibrated when it is used for ‘‘machine vision’’.
This is followed by a description of the most important features
of our 3D shape recovery model. These features will be presented
with special emphasis on the nature and role of our model’s
a priori constraints. Next, problems inherent in the recovery of
the shape of a 3D scene are stated and possible methods of
solving these problems are described. The solutions call attention
to the importance of non-visual, as well as to visual, a priori
constraints. Note that by recovering the shape of a 3D scene,
we mean recovering the geometry of the 3D scene up to one
unknown parameter, namely, the overall scale of the scene and
the objects within it. The scale can be based on the estimation
of a single distance in a 3D scene. The height of the observer, a
human or a robot, can serve as a particularly useful single distance
for a potential navigator. Finally, having explained what it takes
to recover 3D shapes and then to use this information to recover
a 3D scene, we will describe the first step in visual processing,
which is usually referred to as Figure-Ground Organization (FGO),
the terminology favored by theGestalt Psychologists a century ago.
Discussing FGO, the very first stage of visual processing, last will
allow us to actually specify what the output of the first stage of
visual processing should be like. Prior to our new approach to the
recovery of 3D shapes and 3D scenes, there was not even a good
definition of what Figure-Ground Organization was, much less of
what Figure-Ground Organization should accomplish or how this
could be done.

In our approach, FGO refers to (i) finding the 2D region and
its occluding contour for each object in the 2D image, as well
as to (ii) finding the 3D region and its bounding box in the 3D
scene ‘‘out there’’, where the object resides. Once this is done, the
internal contours required for 3D shape recovery are extracted
and the 2D information about the 3D symmetry of the shape and
the planarity of its contours are determined and included in the
description of the ‘‘figure’’ by labeling its contours. It is clear that in
our approach, FGO refers both to properties of the 2D image and to
properties of the 3D shape. This differs from the conventional view
of FGO that limits FGO to 2D features. Note that our claim that FGO
includes 3D, as well as 2D features, was suggested by the Gestalt
Psychologists when they emphasized that the organized figure is
always perceived in front of its background, which is perceived as
lying behind as well as around the figure.

1. Calibration of the camera

The order of the next sections does not reflect the order of
the computations by the visual system or the order of importance
of our computations. The order simply reflects what we believe
to be the best and simplest way of explaining what we did and
why we did it. Why it is important to calibrate your camera
if you want to use it in research on visual perception will be
explained below. We start with the definition of a ‘‘camera
matrix’’. Most of the equations presented in this paper use this
matrix. The process of estimating a camera’s matrix is called
‘‘camera calibration’’. A camera matrix is a 3 by 4 matrix that
defines the geometric properties of a camera, like its focal
length, principal point, etc. These properties characterize the
perspective projection from a 3D scene to a 2D image. Why is the
camera matrix important? Consider a psychophysical experiment
on the perception of objects from perspective images, such as
photographs. The geometrical properties of these photographs
must be known if the experimenter wants to show photographs
of the objects to his subject. Specifically, the subject’s eye (more
precisely, the center of the perspective projection of the eye,
called its ‘‘nodal point’’) must be placed at the center of the
perspective projection for any given picture. This must be done
if you want the retinal image in the subject’s eye produced by
the perspective photograph of the 3D object to be a perspective
image of the 3D object. This is how the first demonstration of
the rules of perspective projection was done almost 600 years
ago by Brunelleschi (see Kubovy, 1986). This method is still used
by modern students of vision to set up their experiments, e.g.,
Attneave and Frost (1969). If the eye is placed at any other point
than at the center of the perspective projection, the retinal image
produced by a perspective photograph of a 3D object will not be a
valid perspective image of this object. Instead, it will be an image of
a 3D projective transformation of the object because a perspective
picture of a perspective picture is not, itself, a perspective picture
(Pizlo, 2008). Failing to use a perspective projection will almost
always lead to a non-veridical percept of the 3Dobject (see Kubovy,
1986; Pirenne, 1970, for examples of such distortions). The bottom
line is that when 2D perspective images are used for making 3D
inferences, the parameters of the camera that took the images must
be known.

Now that you appreciate why a camera matrix is important, we
will describe it in detail. Consider the relation between a 3D point
V ∗ in front of a camera and expressed byhomogeneous coordinates
(V ∗

X , V ∗

Y , V ∗

Z , V ∗

W )T and its 2D camera image v∗ also expressed
by homogenous coordinates (v∗

x , v
∗
y , v

∗
w)T . Eq. (1) represents the

perspective transformation from V ∗ to v∗:

v∗
= KQV ∗ (1)

where

K =


αx s u0
0 αy v0
0 0 1


and Q =


R3x3 −R3x3C3x1


. (2)

Matrix K is called the ‘‘intrinsic matrix’’. It defines the camera’s
intrinsic properties, such as its focal length. Matrix Q is called
the ‘‘extrinsic matrix’’. It represents the transformation from the
world coordinate system to the camera coordinate system. This
transformation consists of a 3D translation (−C3x1) followed by a
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Fig. 2. (a) Radial distortion of a wide angle camera. (b) The image from (a) after calibration.
3D rotation (R3x3) (refer to Faugeras’ book (2001) for the details of
the camera matrix). The geometric details of R and C are described
in the following paragraphs. The product of the intrinsic matrix
(K) and the extrinsic matrix (Q ) is called the ‘‘camera matrix’’ (P),
which is a 3 by 4 matrix

P = KQ . (3)

Combining Eqs. (3) and (2), we obtain

P =

KR −KRC


. (4)

In Eq. (1), the 3D point and its image are expressed by homo-
geneous coordinates because they allow expressing a non-linear
perspective projection by using matrix notation. The transforma-
tion between the Euclidean coordinates and the homogenous co-
ordinates for a 3D point (VX , VY , VZ )

T and a 2D point (vx, vy)
T is

expressed as follows:
VX VY VZ

T
=

V ∗

X V ∗

Y V ∗

Z
T

/V ∗

W (5)
vx vy

T
=

v∗

x v∗

y
T

/v∗

w (6)

assuming that V ∗

W and v∗
w are not equal to zero.2 Eqs. (5) and (6)

imply that the homogenous coordinates of a point are not unique.
For example, (1, 2, 3, 1)T and (2, 4, 6, 2)T represent the same 3D
point. In practical applications, V ∗

W can usually be set to 1. This
way, 3D homogenous coordinates are trivially obtained from 3D
Euclidean coordinates (and vice versa). The representation of a 3D
plane in homogenous coordinates is the same as that of a 3D point:
both are four-element vectors. For example, if π∗ is a 3D plane,
then all pointsV ∗ onπ∗ satisfyπ∗TV ∗

= 0. Similarly, in a 2D image,
the representation of points and lines in homogenous coordinates
are the same, and they are three-element vectors.

In this paper, some equations use both homogenous and
Euclidean coordinates. To avoid confusion, symbols with asterisks
represent the homogenous coordinates of geometric primitives,
like points, lines, or planes. The symbolswithout asterisks represent
the Euclidean coordinates. The individual parameters in the
camera matrix are described next.

Consider the parameters in the intrinsic camera matrix (K).
(µ0, ν0)

T is the principal point of a camera, the point of intersection
of the camera image planewith a line emanating from the center of
a perspective projection that is orthogonal to this plane (see Fig. 3).
The principal point is close to the center of the camera image, but it
is never exactly at the center, due to technical limitations inherent
in the design of the camera. Why are there such limitations?
Consider the fact that when the physical size of a camera’s image,
containing 2000 by 3000 pixels, is less than 1 × 1 cm2, the
displacement of the center of the camera lens by as little as one

2 In homogenous coordinates, if the last value of a vector is equal to zero, the
vector represents a point at infinity.
millimeter translates into a displacement of the principal point by
more than 100 pixels. This makes it almost impossible to mount
the lens exactly in front of the center of the camera’s image. The
greendot in Fig. 5 represents the center of the picture and thewhite
dot represents the principal point of the camera that was used to
makemost of the examples included in this paper. In our setup, this
point is displaced from the center of the image by about 0.6°. In
the human eye, the principal point corresponds to a region of best
vision near the center of the retina, called the ‘‘fovea’’. The fovea
is well-defined both anatomically and perceptually. Anatomically,
the flat floor of the fovea is a disc with a diameter of about 1.5°.
It contains only receptors, called ‘‘cones’’. Perceptually, the fovea
serves as the center of the visual field. It is the region in which
detail vision is most acute. When an observer orients his eye to
look directly at a feature in order to examine its details, the eye’s
orientation will cause the feature’s retinal image to fall near the
center of the fovea, where it is said to be ‘‘fixated’’. An observer
can maintain fixation of an attended object with high precision:
the standard deviation of eye position during maintained fixation
is only 3 or 4min of arc (Steinman, 1965). This is equivalent to only
two pixels in a camera whose field of view is 60° and whose image
is an array of 2000 by 3000 pixels.

The next intrinsic camera parameter considered is called its
‘‘focal distance’’. The focal distance is the distance between the
center of a perspective projection and the camera image (Fig. 3(b)).
In the intrinsic cameramatrix, the focal distance is defined in terms
of the number of pixels along the X axis (αx) and Y axis (αy) in
the camera coordinate system. In other words, both the interval of
lengthαx pixels along the X axis and the interval of lengthαy pixels
along the Y axis are equal to the focal length. In modern cameras,
the difference between αx and αy is very small, so we can assume
that they are equal. In the human eye, the focal distance is about
2 cm,which is the approximate diameter of the human eyeball. The
third intrinsic parameter of a camera is called the ‘‘skew’’ (s)which
specifies how much a pixel is biased from a perfect rectangle. For
most modern cameras, the skew parameter is zero.

There is onemore intrinsic camera parameter. Itmeasureswhat
is called its ‘‘radial distortion’’. This parameter is not expressed
in Eq. (1) because the radial distortion cannot be represented as
a linear transformation. In an image with radial distortion, the
straight lines at the periphery tend to be curved (see Fig. 2). Radial
distortion is obvious with cameras whose lenses have a large field
of view (e.g., 60°) or a small focal length.

Now consider the extrinsic matrix Q . It defines the transforma-
tion between the world coordinate system and the camera coor-
dinate system. The specification of the world coordinate system
depends on the application. For example, if the task is to recover
a 3D scene in a room, it is natural to use one of the corners of the
room as the origin and the three edges of the room emanating from
this corner as the X, Y and Z axes. The camera coordinate system
does not actually depend on the application. It is a fixed character-
istic of the camera. This coordinate system is defined as follows:
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Fig. 3. (a) The camera’s coordinate system. (b) Schematic illustration of a camera. C represents the projection center. p is the principal point. The line pC is orthogonal to
the image plane π . f represents the camera’s focal length.
the origin is the center of perspective projection of the camera. The
XY plane is parallel to the camera image plane. The X axis coin-
cideswith the X axis of the camera image. The Z axis represents the
depth direction (see Fig. 3(a)). The vector C in Q is the projection
center expressed in the world coordinates. R3X3, a rotation matrix,
represents the orientation of the camera coordinate system. Specif-
ically, the three row vectors in R correspond to the directions of the
X, Y and Z axes of the camera coordinate system expressed in the
world coordinate system.

It follows that the camera matrix not only includes a camera’s
properties, it also includes its orientation and position in the
environment (see Faugeras, 2001, and Hartley & Zisserman, 2003,
for additional details about the camera matrix). The process of
estimating camera parameters is called ‘‘camera calibration’’. A
camera is calibrated by acquiring multiple images of a reference
scene, whose geometry is known. Once the 3D coordinates of the
scene and the 2D coordinates in its image are known, one can
solve for the camera’s unknown intrinsic and extrinsic parameters.
Open access software for calibrating a camera, can be found at (e.g.,
OpenCV: http://opencv.willowgarage.com/wiki/FullOpenCVWiki).

2. Recovery of a 3D shape and a 3D scene

The camera matrix defines a camera’s geometry—it specifies
how to project a 3D point onto a 2D image plane. Given a 3D point,
its image is uniquely determined. Therefore, generating a 2D image
from a 3D scene is an easy ‘‘forward problem’’ (Pizlo, 2001; Poggio,
Torre, & Koch, 1985). However, the ‘‘inverse problem’’, recovering
a 3D scene from its 2D image, is difficult because the solution is
not unique, i.e., for any given 2D image point, there are infinitely
many 3D points that can produce the same 2D image point.
Inverse problems are almost always difficult because they are ‘‘ill-
posed’’ and ‘‘ill-conditioned’’. In plain English, inverse problems are
‘‘insoluble’’. The only way to solve an inverse problem is to impose
a priori constraints on the family of possible interpretations, and
then combine these constraints with the available data to find the
most reasonable solution. Ideally, it will be the correct, veridical,
interpretation of the conditions in the physical world. Fig. 4 shows
a flow chart illustrating how to recover a 3D scene from a single 2D
image based on the a priori constraints, namely, from the direction
of gravity, symmetry and planarity (the pseudo code is provided in
Appendix C). The model is described in detail just below.

The symmetry of the 3D shape is a strong a priori constraint.
Given a 2D perspective image of a symmetrical 3D shape, its
symmetrical 3D interpretation is unique except for the size and
position. The following equations show how to use the camera
matrix (P) to recover a pair of 3D symmetric points (X1 and X2)
from their 2D image (x1 and x2) if the vanishing point v for the line
connecting X1 and X2 is given.3

From Eq. (4), the camera matrix P can be expressed as follows

P =

M3X3 p4


(7)

where M3X3 = KR and p4 = −KRC . Let x1 and x2 be expressed
by the Euclidean coordinates and x∗

1 and x∗

2 be their homogenous
coordinates with the third element equal to 1. Then the set of all
3D points whose image is x1 (or x2) can be expressed as follows
(Eq. (6.14) in Hartley & Zisserman, 2003):

Xi = M−1(kix∗

i − p4) i = 1, 2 (8)

ki are free parameters. For the solutions X1 and X2 to be sym-
metrical, k1 and k2 must satisfy the following equation (refer to
Appendix A for the derivation):

v∗TM−TM−1x∗

1 v∗TM−TM−1x∗

2
|x1 − v| − |x2 − v|


k1
k2


=


2v∗TM−TM−1p4 − 2d

0


. (9)

For the recovered pairs of symmetrical 3D points, the normal of
the symmetry plane is determined by the vanishing point v, and is
equal toM−1v∗. The position of the symmetry plane is determined
by the parameter d. d is a free parameter and it can be any real
number, which determines the size (or position) of a recovered
3D object. Fig. 7(a) shows five objects recovered from the same 2D
camera image. Their symmetry planes have the same orientation,
but different positions. The recovered object is small when it is
close to the camera (the cyan box in Fig. 7(a)). The recovered object
is large when it is far from the camera.

Although Eq. (9) looks complex, it can be simplified in appli-
cations after making some assumptions about the camera’s pa-
rameters. For example, if the skew s is equal to 0, αx and αy are
identical, and the origin of an image coincides with the principal
point, then K is a diagonal matrix (K = diag(αx, αx, 1)). Further-
more, if theworld coordinate systemcoincideswith the camera co-
ordinate system, then R is an identitymatrix and p4 is a zero vector.
It follows thatM = K .

Eq. (9) suggests that in order to recover a symmetrical 3D shape,
the visual system needs to: (1) know where the vanishing point
is and (2) establish which points in a 2D image, are the images of
pairs of 3D symmetrical points. In order to accomplish these two

3 The vanishing point in the image is the intersection of the lines connecting the
images of pairs of 3D symmetrical points. In 3D space, all of these lines are parallel
to one another. In a perspective image, they all intersect at the vanishing point.

http://opencv.willowgarage.com/wiki/FullOpenCVWiki
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Fig. 4. Flow chart of the model, recovering a 3D scene from a single 2D image.
things, two additional a priori constraints will be required, namely,
the direction of gravity and a line representing the horizon.4

Computation of the vanishing point and identification of symmetric
pairs

Gravity is one of the most critical constraints operating in
our environment. Gravity is not only responsible for stability
in our environment; it is also most likely to be responsible
for the symmetry of almost all animals’ bodies and the design
of symmetrical objects. If the ground plane is horizontal, it is
orthogonal to the direction of gravity. An object will be stable if
its body is symmetrical with respect to the plane parallel to the
direction of gravity. For example, a symmetrical animal will not
fall on its side when it stands. It follows that given a symmetrical

4 The horizon is a vanishing line on the image plane, which is a perspective
projection of the line at infinity on any plane parallel to the horizontal ground plane.
3D shape standing on a horizontal ground, the line segments
connecting the symmetrical points are parallel and orthogonal
to gravity. For all parallel lines that are orthogonal to gravity,
their vanishing points fall on a horizon. If the ground plane
is not horizontal, the symmetry line segments of symmetrical
objects standing on the ground are parallel to the ground but not
orthogonal to the direction of gravity. The corresponding vanishing
line is thendetermined by the actual groundplane, not by the plane
orthogonal to the direction of gravity.

Assume that the normal of the ground floor is Nh in the
world coordinate system, then the horizon (i.e., the vanishing line
corresponding to the horizontal ground plane) is expressed as
follows (Result 8.16 in Hartley & Zisserman, 2003):

l∗h = M−TNh. (10)

For a calibrated camera, the horizon is known before the image
is taken,whichmeans that this information is truly a priori. Existing
evidence suggests that the same is true in human vision. The
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Fig. 5. The red line above the image of a 3D scene shows the horizon in this
scene. The red dot below the image shows the vanishing point corresponding to
the 3D vertical lines. The principal point is marked by a white dot near the center
of the image. The geometrical center of the image is marked by the green dot. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

perception of the horizontal direction is affected by both visual and
vestibular cues (Matin & Fox, 1989). Once the horizon is known,we
can search for the vanishing point, which is the intersection of the
2D symmetry line segments of a given object. Since the vanishing
point must be on the horizon, the search is determined by only
one free parameter. Without the horizon, there are two unknown
parameters specifying the position of the vanishing point, and the
point cannot be estimated reliably (specifically, its distance from
the object’s image in the 2D camera image). The horizon provides
a very strong constraint for this less reliable parameter. Eq. (10)
shows that the horizon is equal to the product of the direction of
gravity and the inverse of transposed M . Because M (the product
of the intrinsic matrix K and the rotation matrix R) is unrelated
to the position of the camera (C), the translation of the camera in
3D space leaves the horizon and all vanishing points in the image
invariant. These invariant features are likely to be useful in robot
navigation.

The vanishing point on the horizon is obtained by computing
the intersection between the symmetry lines (the green lines in
Fig. 6(b)) and the horizon (the blue line). The green lines (contours
in the image) are not always perfectly straight. Therefore, the first
step in computing the vanishing point is to approximate (by using
least squares) the symmetry lines with straight lines.

Let x∗

i represent the 2D points on a symmetry line. Let Akx3 =
x∗

1 x∗

2 · · · x∗

k
T . Then the approximating line l∗ is parallel to

the eigenvector of (ATA)3x3 whose corresponding eigenvalue is the
smallest.5 Once each symmetry line is approximated by a straight
line, we can estimate the vanishing point for these symmetry lines.
Suppose for one object, l∗1, l

∗

2, . . . , l
∗
n are the n symmetry lines.

Because of noise, the intersections of symmetry lines with the

5 The singular value decomposition (SVD) method can be used to find
eigenvectors. The matrix A can be decomposed and expressed as A = USV T where
U and V are orthonormal matrices. S is a diagonal matrix and its values are sorted
in a descending order. The direction of the approximating line is represented by the
last column vector of V .
horizon are not identical. Therefore, we estimate the vanishing
point as the point that has the least square distance to all symmetry
lines.

Let the horizon l∗h =

(l∗h)x (l∗h)y (l∗h)w


, then m∗

h =

−(l∗h)y

(l∗h)x 0

represents the direction of the l∗h . Suppose v∗

0 is one point
on the horizon such that (v∗

0)
T l∗h = 0, then the vanishing point is

estimated as:

v∗
= v∗

0 + um∗

h (11)

where u = −
(m∗

h)T BT Bv∗
0

(m∗
h)T BT Bm∗

h
and B =


l∗1 l∗2 · · · l∗k

T . The
derivation is given in Appendix B.

Once the vanishing point is estimated, the pairs of points in the
2D image, which are images of symmetrical points of an object, can
be established as intersections of pairs of corresponding contours
and the lines emanating from the vanishing point. Fig. 6(c)
illustrates how to identify the symmetrical pair of curves. These
curves are drawn in blue. The symmetrical pairs of points on the
corresponding curves are collinear with the vanishing point. The
3D symmetrical shape can thenbe recovered by recovering all pairs
of symmetrical points according to Eq. (8).
Recovery of the hidden part

We just showed how to recover pairs of symmetrical 3D points
by using Eq. (8). Note, however, that in order to recover a 3D point,
both the image of this point and of its symmetrical counterpart had
to be known. In other words, the symmetrical pairs in a 2D image
must be visible. For example, the back, the seat and the front legs of
the chair in Fig. 6(b) can be recovered on the basis of the symmetry
constraint because their corresponding symmetrical contours are
visible. However, the two rear legs cannot be recovered by using
symmetry alone because one of the legs is hidden. In this case,
we begin by using the planarity constraint to recover the point of
the chair that is visible. The contours representing the right side of
the chair shown in Fig. 6(b) are coplanar (approximately) and we
can estimate the plane containing these contours from the points
and contours that were recovered by using Eq. (8) (they could be
recovered because both symmetrical pairs were visible). Once this
is done, the intersection of this plane and the plane defined by
the image of the visible right rear leg and the projection center
of the camera, is a 3D line containing the recovered right rear leg.
Its invisible, symmetrical counterpart is obtained by reflecting the
recovered right rear leg with respect to the symmetry plane (see Li
et al., 2009, for details).
Recovering the shape and scale of a natural 3D scene

We pointed out (above) that for the recovered 3D shapes, their
sizes and their positions are undetermined, but ‘‘placing’’ them
on the ground will make it possible to uniquely determine the
relative positions, sizes and pair-wise distances among all of the 3D
objects. When the shape of a 3D object is recovered, the object can
either be small and close to the camera, or large and far from the
camera (see Fig. 7(a)). Once the height of a camera above the floor
is known, there is only one size and only one corresponding distance
at which a given object will be resting on the floor. For smaller
distances, a recovered object would be floating in the air, and for
larger distances, the object will be below the floor. Thus, regardless
of the number of objects in the scene, their sizes, positions and
distances are determined by only one parameter, namely the
height of the camera. Ambiguity only remains for objects whose
relative position with respect to the floor is unknown: this occurs
whenever the bottom part of an object is occluded. Whenever this
happens, the size and distance of the object will be uncertain. But,
because real objects cannot occupy the same physical space, this
uncertainty can be reduced by using information obtained from
nearby objects. It is very likely that the a priori constraints used by
our model are also used by the human visual system. The subject’s
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Fig. 6. (a) The symmetry plane of a 3D object resting on the ground is vertical. (b) Symmetry line segments are indicated by green. (c) Pairs of symmetrical contours are
marked by blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. (a) Recovering the size and position of a 3D object. The small green cube represents the 3D position of the robot’s camera. (b) The image of a recovered 3D scene (for
on-line demo go to: http://web.ics.purdue.edu/~li135/SceneRecover.html). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
judgments of relative distances and angles are very accurate when
they are made with structured scenes like those in Fig. 1 (Kwon,
2012), but they are very inaccurate when the viewing conditions
and stimuli are impoverished. For example, binocular observers
make large systematic errors in judging distances when only a
few points of light are shown in total darkness (Foley, 1972), and
they misjudge angles formed by spherical objects suspended on
strings from the ceiling (Doumen, Kappers, & Koenderink, 2006,
2007, 2008).

Fig. 7(b) shows the recovered 3D scene for the picture in
Fig. 5. The online demo at http://web.ics.purdue.edu/∼li135/
SceneRecover.html shows an animation of this recovery. The
widths and heights of the children’s chairs were about 30 cm. The
accuracy of our size and distance recovery can be evaluated by
comparing their distances and sizes to the 20 cm. wide unit-square
scale shown on the floor. The position and the orientation of the
robot’s camera used to make this image are indicated by the cyan
box. These results show that our algorithm not only recovered the
size and distance of the 3D objects accurately, it recovered the
entire objects, including their invisible back contours!

We provided the reader with a demo to illustrate the methods
described in this section. This demo consists of a Matlab program
and data (http://web.ics.purdue.edu/∼li135/JMP2011/JMPDemo.
rar). The image shown in Fig. 5 is the image used for the 3D
recovery in this demo. The 2D contours extracted from this image
are provided as the input data. The Matlab program performs
the 3D recovery of the contours as described in this section. The
reader is encouraged to use this program to recover the 3D scene
represented in Fig. 5, and also to use this program to recover
contours in their own images after calibrating their own camera
(see above).

3. Figure-Ground Organization (FGO)

In the Introduction, we enumerated the tasks that had to
be accomplished when we want to recover a 3D scene. One of
these tasks, isolating objects from their background, was called
the Figure-Ground Organization (FGO) problem. The fundamental
importance of this problem was pointed out by the Gestalt
Psychologists almost 100 years ago, but they made very little
progress in developing it primarily because they lacked the
mathematical and computational tools to do so. Following the
Cognitive Revolution, such tools became available: computers
were built, Information Theory was formulated, and Cybernetics
was established as an interdisciplinary specialty to integrate
engineering, biology and psychology. Unfortunately, the progress
made in the development of applied mathematics, computer
science and electrical engineering did not include any important
advances in our understanding of the most important basic
problem in vision, viz., the FGO problem that our machine had to
solve. This absence of significant progress with the FGO problem
allowed the vision community to stop worrying about how
important it was and, in time, they even began to denigrate this
as well as many other contributions of the Gestalt Psychologists
to visual perception. The few who did try to work on it tried
to formulate theories and models of FGO without clarifying the
ill-defined concepts used by Gestalt Psychologists before the
Cognitive Revolution. This led to a lot of confusion in the machine
vision community on one side and in the human vision community,
on the other. This confusionwould (and should) have been avoided
if ‘‘visionists’’ on both sides had remembered the question that
actually underlay the FGO problem, namely, how does the human
observer see real 3D objects in natural 3D scenes veridically on
the basis of the information provided by 2D real retinal images.
Human beings, as well as other animals, obviously do. How do they
do it? Ignoring, or downplaying the importance of studying real
viewing conditions inevitably changed the nature of the problem.
Confining efforts to the study of 2D stimuli should not, and did not,
lead anywhere.
Finding objects in the 2D image and in the 3D scene

We begin by considering how the traditional approach tries
to distinguish objects from their backgrounds. This approach uses
information only present in a pair of 2D images with slightly
different views of the scene. The pair can be obtained either
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Fig. 8. (a) A 2D image of a 3D scene containing children’s furniture. (b) A top view of the 3D scene in (a) showing the 8 objects that were ‘‘seen’’ by the robot (the robot
analyzed the 3D scene within a 3 m viewing distance). The green rectangles represent individual objects, their sizes, aspect ratios and orientations. Note that even the
occluded chair in the back of the scene was detected. The top viewwas produced from a pair of images acquired by the robot’s stereoscopic camera. (c) The detected regions
for individual objects in the 2D image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
by using two eyes (‘‘binocular disparity’’) or by using successive
images from a single eye (‘‘motion parallax’’). Julesz (1971)
provided strong support for the functional advantages inherent in
having more than one view of a scene by showing that binocular
disparity and motion parallax are critical in breaking camouflage.
His most compelling support for this claim was obtained when he
showed that perceptions of 3D spatial relations can be produced
with ‘‘random-dot-stereograms’’. Such stereograms contain no
useful monocular information about the objects that are actually
present in the visual field.

Fig. 8 illustrates what can be accomplished by using two
different images. The cameramounted on our robot acquired a pair
of stereoscopic images that the robot used to detect and locate the
3D objects represented in its pair of 2D images (see Fig. 1). The
robot started the process by using binocular disparity to compute
a 3D map. This was done by using an off-the-shelf algorithm for
solving the stereo-correspondence problem (Wong, Vassiliadis, &
Cotofana, 2002). Two computational steps were then used by the
robot to construct a top view of the 3D scene, specifically, the
3D points cloud was computed from stereo disparity by using the
triangulation method, and the floor was approximated by finding
a 3D plane which contained the maximal number of points.6 Note
that this stepwas also used to calibrate our robot’s camera, namely,
we computed the orientation of the robot’s camera and its position
relative to the floor (see the parameters of the extrinsic matrix).
Since camera orientation is computed relative to the floor, the slant
of the floor is not an issue. The detection of the floor is an important
step because:

(1) one can remove the points close to the floor andbeneath it once
we know where it is;

(2) one can project the remaining 3D points onto the floor to
generate a top view image. The white dots in Fig. 8(b) show
the top view image after the floor points were removed. This
made the layout of the objects in the scene very clear.

We then identified the number of objects, their positions and
their orientations by fitting rectangles within the top view image.
The 3D distances, sizes and aspect ratios may not be very accurate
in this top view, but all 8 objects present in this scene were
detected and located relative to each other quite well. This is
evident in the 2D image of Fig. 8(b). It is clear that even at this early
stage of analysis, the robot has obtained considerable information
about this 3D scene. The top view clearly has sufficient information
for the robot to plan navigations among all of these 8 objects.
The top view of the furniture arrangement shown in Fig. 8(b) also
makes it clear that the critical first step of FGO has been solved for

6 In the application, the thickness of the floor plane is set to 10 mm. Therefore,
our algorithm can deal with a floor that is not perfectly flat.
this rather complex furniture arrangement. The computation of the
top view and its use in solving the FGO problem makes intuitive
sense because a top view of objects in most natural scenes is not
likely to have one object occluding another. Furniture stacked in a
storeroommight be a relatively common exception. Occlusions are
common in the original view shown in Fig. 8(a) because far objects
are likely to be occluded by near objects but this does not present a
problemwhen the top view is used. Using a scene-centered, rather
than a viewer-centered, representation early in processing proved
to be essential for solving the FGO problem.

If you want to do more than navigate in this environment,
it probably will become useful to recover the actual 3D shapes
of each of the 8 objects. Their 3D shapes will be the best way
to identify them because their shapes will let you know their
purpose, sitting on some and eating off others. Doing this requires
obtaining 2D information about the edges representing each 3D
shape. Detecting meaningful edges in a single 2D image is difficult
because there are alwaysmany spurious edges in the image caused
by texture and shading. The problem can be solved if the region
in the image representing each individual object can be specified.
Fig. 8(c) illustrates how our model solved this problem. The model
estimates the height of each object from the distribution of the
3D points that projected to a given rectangle in Fig. 8(b). This
operation produced a 3D ‘‘bounding box’’ for each object. This 3D
box is then projected to the original 2D image. This produces a
convex region containing the image of the object. So, our method,
as described in this section, can actually be used to produce both
3D and 2D FGO: it can also be used to determine the spatial location
of each of the objects on the floor as well as in the 2D image.
Note that the 2-dimensional FGO is based on a 3-dimensional FGO.
The 3D FGO is easier to perform so it is not surprising that it is
best done before the 2D FGO. The 2D FGO is also critical, however,
because it provides ameans to transition fromboth the texture and
surface information that were used to produce the depth map to
the contours that are essential for recovering individual 3D shapes.

Finally, note that binocular information about the objects in the
scene can actually be used to verify and update the orientation of
the camera in the scene coordinate system (see extrinsic camera
calibration). Furthermore, a comparison of the 3D scene after and
before the robot’s movement can be used by the robot for self-
localization and visual verification of its navigation.

4. Extracting relevant edges

Now that we know that the recovery of 3D shapes depends
entirely on contours, and that texture and surfaces play no role,
we can ask how can we extract relevant (hence meaningful)
contours of objects within a given scene? We need to know which
contours belong to which object. Furthermore, we need to know
how to organize the 2D contours in the retinal image so that this
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Fig. 9. (a) An input image. (b) Its binary edge image. (c) These edges grouped to edge fragments. (d) Occluding contours of a foreground object incorrectly merged with the
background objects. (e) Contours of a single object selected in the image when the FGO problem has been solved correctly.
organization conveys sufficient information about the 3D shapes
‘‘out there’’ to permit an observer (human or robot) to function
effectively in its environment. Considerable progress has been
made in this direction recently. It is described in this and the next
section.

The problem of extracting relevant (hence meaningful) edges
in a 2D image that contains unfamiliar objects has traditionally
been deemed to be an insoluble problem; a problem so difficult
that many students of human and computer vision assume that
a solution is actually impossible. The main difficulty traditionally
seen arises from the fact that any edge-detection algorithm will
detect at least 10 times as many edges as it should detect
and will also miss some very important edges. These irrelevant
(meaningless) edges are produced in the image by such things as
texture, occlusions, shadows and by specular reflections.

In computer vision, where most of the work has been done
so far, the process of extracting relevant edges is called ‘‘contour
grouping’’. It begins by taking a color or a gray-level image
(Fig. 9(a)) and reducing it to a binary image composed of edge
pixels (Fig. 9(b)). The edge pixels are then grouped to form curves
called ‘‘edge fragments’’. Different edge fragments are shown in
different colors in Fig. 9(c). This is a greedy, low-level process.
It uses only very simple processes such as proximity and good
continuation and it uses them at the pixel level. Some other
simple rules are often applied to eliminate edge fragments, e.g.,
the removal of too short or wiggly fragments. These processes,
however, are not likely to extract the true contours of 3D objects.
An example of this kind of failure is shown in Fig. 9(d) where
contours of two different objects have been merged into a single
contour. If such mistakes are not corrected, it will be impossible
to perform a meaningful recovery of the 3D shape. The only
algorithms developed to date that can produce correct results
require familiarity with the 3D shape and its 2D images before the
recovery can actually be made (Andriluka, Roth, & Schiele, 2008;
Ferrari, Tuytelaars, & Gool, 2006; Latecki, Lu, Sobel, & Bai, 2008;
Lin, Hua, & Davis, 2009; Ma & Latecki, 2011; Srinivasan, Zhu, & Shi,
2010; Toshev, Taskar, & Daniilidis, 2010; Yang & Latecki, 2010).
These algorithms assume that the observer saw multiple views
of each object and stored them in memory. These stored views
are then used to match the edges in the retinal or camera image.
Clearly, this multiple-view theory is not only very cumbersome;
it is actually implausible because the contours of the 2D image
change in unpredictable ways whenever the viewing direction
changes. To actually use this approach, onewould need a very large
number of 2D models for each 3D object. Considering that there
is a huge number of possible objects in our environment, a large
number of possible positions, as well as the large range of sizes of
the objects in the 2D image, the matching problem inherent in this
kind of algorithm leads to a combinatorial explosion.

We already knew that this problem can be solved easilywithout
familiarity by human beingswho see unfamiliar shapes veridically.
Our robot can do it without familiarity, too. Furthermore, it
can do it easily once the specific 2D region that contains the
image of a specific 3D object has been determined (see Fig. 8(c)).
With this known, the algorithm focuses its analysis on the
small set of edge fragments that are located within this region.
Concentrating the analysis on a meaningful, predefined 2D region
substantially improves the likelihood of extracting the relevant set
of contours because contours belonging to the background have
been eliminated from consideration (see Fig. 9(e)).

Once the relevant 2D contours have been extracted for each of
the 3D objects, two types of 3D representations can be produced,
namely, a coarse representation of the 3D shape in the form of a
rectangular bounding box (Fig. 10(b)), and a more precise (finer)
representation in the form of the 3D contours that represent each
3D shape (Fig. 10(c)). How are the two representations computed?
Consider the bounding box first. It can be computed by using
three vanishing points (see Fig. 11). One vanishing point is the
intersection of symmetry lines (see Fig. 6). The second vanishing
point is the intersection of the lines in the 2D image that are
projections of the vertical lines in the 3D scene. Note that in the
presence of gravity, very many natural objects, such as cats, dogs,
birds, and human beings, as well as furniture have appendages
with multiple vertical edges we call their ‘‘legs’’. Adjusting the
orientation of these appendages permits them to maintain their
balance when they stand or walk on tilted surfaces. This second
vanishing point (which will be called here the ‘‘vertical vanishing
point’’) can be determined solely on the basis of information
about the direction of gravity, information that is readily available
to living creatures (see Fig. 5). The vertical vanishing point is
calculated as follows. Assume that the direction of gravity is Ng ,
then in the image the vanishing point for those 3D vertical lines
can be expressed as:

v∗
g = MNg . (12)
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(a) Detect furniture

(b) Box estimation

(c) 3D scene recovery

Fig. 10. (a) Detected objects. (b) Their 3D bounding boxes. (c) The recovered 3D shapes and locations.
Fig. 11. A perspective projection of a box. VP1, VP2 and VP3 represent the vanishing
points for the three groups of mutually orthogonal line segments of the box.

Eq. (12) suggests that the vanishing point, like a horizon, is deter-
mined by the camera’s intrinsic properties and the camera’s orien-
tation. Finally, note that formany objects, such as furniture, there is
a third vanishing point that represents the edges orthogonal to the
other two types of edges in 3D (Fig. 11). All three of these vanish-
ing points form right angles with the vertex at the center of the
perspective projection of the camera. This fact is equivalent to
the following equation characterizing image properties (Eq. (8.7)
in Hartley & Zisserman, 2003):

v∗T
i K−TK−1v∗

j = 0 i ≠ j. (13)

The equation (just above) implies that if we know any two
vanishing points, we can compute the third. In the case of animal
bodies, which are not rectangular like chairs, the third vanishing
point is also meaningful: it represents the direction in which the
animal is facing. This means that a 3D rectangular bounding box
computed on the basis of these 3 vanishing points is at least an
adequate, albeit coarse representation for most objects, animate
and inanimate.

Note that these 3D bounding boxes provide a type of informa-
tion that is analogous to the way the boxes were estimated when
we solved the binocular FGO problem (see Fig. 8(b)). The difference
is that the boxes in Fig. 8(b) were estimated on the basis of texture
information, whereas the boxes in Fig. 10(b) were estimated on
the basis of contour information. One might consider the fact that
these two different analyses led to the same result as an instan-
tiation of the action of Grossberg’s feature and boundary contour
systems (Grossberg&Mingolla, 1985). There is an important differ-
ence, namely, our analyses are taking place at the stage of the 3D
representation, the stage at which the 3D objects actually reside.

A precise (fine) representation of the 3D shape can be produced
by performing the 3D shape recovery on the basis of the object’s
symmetry (see Fig. 10(c)). This recovery is done by using the
algorithm described in Section 2. The only operation that remains
to be done is the detection of the 3D mirror symmetry in the 2D
asymmetrical image. This operation is explained in Section 5.

5. Establishing the 3D symmetry correspondence of contours

A 2D image of a 3D mirror-symmetrical object is itself
symmetrical but only for a narrow range of 3D viewing directions,
so the question arises as to howa 3D symmetry can be detected in a
2D asymmetrical image. This problem is not trivial because pairs of
unrelated 2D curves always have a 3D symmetrical interpretation
(Sawada, Li, & Pizlo, 2011). In other words, without additional
constraints, 3D symmetry is accidental. This fact is illustrated
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Fig. 12. (a) Extracted curves for the image of a chair. Curves corresponding to the same vanishing points are drawn in the same color. (b) Two necessary conditions that are
used to checkwhether the two edges of a junction are the potential symmetrical edges of another junction. (c) Detected symmetrical curves for the image in (a). Symmetrical
curves are drawn in the same color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in http://www1.psych.purdue.edu/∼zpizlo/sym2011/DemoFiles/
Demo8.html where two different symmetrical interpretations of
a 2D curve are given. One of these interpretations is natural in
the sense that it agrees with the percept of an observer produced
by a stationary 2D curve. The other interpretation is surprising.
The difference between these two interpretations is that the
natural interpretation consists of two planar curves. The fact that
the human visual system uses a planarity constraint has been
known at least since Leclerc and Fischler (1992) and Sinha and
Adelson (1992) published their models, but it was less clear why
a planarity constraint is actually used. Planar contours are quite
common in man-made objects, but they are much less common
in biological organisms. We believe that the human visual system
uses the planarity of contours constraint because this constraint
eliminates spurious symmetrical 3D interpretations rather than
because planar contours are common. It is important to point out
that the use of the planarity constraint does not imply that the
3D interpretations have planar contours; it only implies that the
interpretations have contours that are biased towards planarity.
This means that the torsion of 3D curves is kept to a minimum.
It turns out that minimizing torsion eliminates 3D interpretations
that correspond to degenerate views, views that preclude the
veridical perception of 3D objects (Sawada et al., 2011).

If two 3D curves are planar and mirror symmetrical, their 2D
images are related by a 2D affine transformation in the case of
an orthographic image and by a 2D projective transformation in
the case of a perspective image. The fact that a 3D symmetry can
be detected in a 2D asymmetrical image through an application
of a 2D transformation and its invariants simplifies the problem
substantially. Under such conditions, 3D symmetry becomes non-
accidental in the sense that a 2D image of a 3D asymmetrical shape
is unlikely to have 3D symmetrical interpretations.

The task of detecting 3D symmetry in a 2D image is always
simplified if higher order features, such as corners, intersections,
complex curves and closed contours are detected first. Two pairs
of feature points in a 2D image correspond to two pairs of
mirror symmetrical points in a 3D interpretation only if the line
segments connecting the 2D corresponding points are parallel
in an orthographic image and if they intersect at a vanishing
point in a perspective image. Recall from the section on 3D
scene recovery that vanishing points and lines can be estimated
directly from vestibular cues provided by gravity. The pictures at
http://web.ics.purdue.edu/~li135/SymDetect.html show the result
of establishing 3D symmetry correspondence for a few objects
shown in 2D perspective images. In this example, our model
checked whether any two junctions in the 2D images satisfy the
following two constraints: (1) the line connecting the junctions
passes through one vanishing point and (2) the difference between
two junction angles is equal to the sum of the angles formed
by the two junctions with the other two vanishing points (see
Fig. 12(b)). These are the necessary conditions for a 3D symmetrical
interpretation in the case where the pair of symmetrical curves are
on parallel planes (like in the case of two sides of a chair shown in
Fig. 12(a)). The symmetrical pairs of curves are drawn in the same
color. Once the contours have been organized, it is relatively easy to
recover the 3D scene including the 3D shapes contained within it.
Summary and conclusion

We described a set of computational tools (models) that allow
a robot to ‘‘see’’ a natural 3D scene and to ‘‘understand’’ it in the
sense that it can recover the 3D shapes, sizes and locations of the
objects in the scene as well as the free spaces among them. The
Figure-Ground Organization and 3D shape recovery tools built into
our robot permit it to perform both of these complicated tasks on
its own. Ourmodel does not use learning and it need notmemorize
hundreds of 2D images of 3D objects, so it can be used to recover
unfamiliar scenes and unknown objects.

Next, we will briefly describe several prior attempts to recover
shapes and scenes, relevant to our work, that are not discussed in
the main text of our paper. This description is not intended to be a
comprehensive review of prior work. Only highlights of the prior
work, closely related to our model, will be included.

Our model is not the first attempt to apply simplicity con-
straints to recover 3D shapes and scenes. For example, Attneave
and Frost (1969) used the orthogonality constraint to recover a 3D
rectangular box froma single 2D image. Leclerc and Fischler (1992),
Marill (1991), Sinha and Adelson (1992) and Sinha (1995) used
minimum variance of angles, planarity, andminimum depth range
to recover polyhedra from a single 2D image. All of these models
were only testedwith simple line drawings andwere never applied
to real images of real objects or real scenes.

Vanishing points in a 2D image can serve as an extension
of the use of symmetry to recover 3D shapes. Vanishing points
have been used in reconstructing 3D scenes, especially for urban
(carpentered) environments. In such environments, parallel lines
are fairly common and they are often vertical or horizontal. This is
true about the sides of a road and the edges of typical rectangular
rooms. With a calibrated camera, the 3D orientation of parallel
lines can be derived from the vanishing point (Coxeter, 1987). This
makes it possible to estimate the orientation of the camera relative
to the 3D scene. A typical application of the vanishing point can be
found in robot navigation (see DeSouza & Kak, 2002, for a survey
of robot navigation).

In our model, we use binocular information to detect the floor
and then isolate different objects (FGO) on the floor. Burschka, Lee,
and Hager (2002) used a similar method to detect objects from
a disparity image, allowing their robot to avoid obstacles during
its navigation. Their algorithm, however, relied on the spatial
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http://web.ics.purdue.edu/~li135/SymDetect.html
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continuity of binocular disparity, whichmeant that the robot could
not detect partially-occluded objects that are divided into several
regions in the image.

Despite considerable progress, there is still a lot of work to
be done. By far the most important unfinished business is to
implement the algorithms in such a way that the robot can see
the environment in ‘‘real time’’. In human vision there are always
delays due to neural transmission from the retina to the visual
cortex and due to visual processing itself (Nijhawan, 2002). The
robot has to deal with the same kind of delays. Acquiring and
analyzing images takes time, so when the 3D reconstruction is
finished, the 3D representation corresponds to the scene that was
present 100 ms, or more, ago. If the scene is static, this temporal
delay is not a problem. But when the scene is dynamic because
of motion of the seeing agent or the motion of other objects, the
only way to actually see the world ‘‘now’’ (in real time) is to make
temporal predictions. Temporal predictions can be accurate for
the same reason that spatial predictions can be accurate. The fact
that our model can recover the back invisible parts of opaque
objects, and the invisible spaces behind objects shows that spatial
predictions can be quite pervasive. Both temporal prediction and
spatial prediction work very well because they are based on very
effective a priori constraints. Put differently, the only way to actually
perform in real time, as opposed to performing with respect to what
happened 100ms in the past is to see our predictions of the world, not
the world itself.

These problems are closely related to problems explored in
active vision approaches. Active vision is a well established
research area in computer vision (e.g., Blake & Yuille, 1992). An
active vision system is a dynamic system that is able to change
the location and orientation of the cameras in order to investigate
the environment and get better information from it. Active Vision
favors a goal oriented exploration of the environment in order to
answer specific queries posed by the observer. It is based on the
premise that an observer (human or computer) may be able to
understand a visual environment more effectively and efficiently
if the viewpoint and viewing direction of the camera are dynamic
and task dependent.

Last, but by no means the least task facing us, the models
currently used for extracting all relevant contours of 3D shapes
should be elaborated so that the robot can extract 3D shapes
and scenes with the high degree of precision characteristic of the
human visual system.

Note that all of these unfinished projects are actually elabora-
tions of the 3D shape and scene recovery models that we have
in hand now. In other words, all of the major steps required for
3D shape and scene recovery have been accomplished and they
can be performed autonomously by a robot at this time. The re-
maining steps (described just above) are designed to enhance its
performance, bringing it in line with the performance of human
beings. Once they are accomplished, our robot will not only be able
to act autonomously; it will also be able to navigate within natural
scenes as well as a human being can navigate under similar con-
ditions. There is even good reason to believe that the FGO and 3D
shape-recovery tools that you have seenwork sowell for our robot
are actually rather similar to those used by human beings perform-
ing similar tasks.We feel entitled tomake this claim becausewhen
we tested these tools in human psychophysical experiments, the
human and the model’s performances were very similar (Kwon,
2012; Li et al., 2011). Even if we ignore this psychophysical sup-
port, the mere fact that the robot can actually ‘‘see’’ a 3D scene
veridically and plan its actions effectively within it provides evi-
dence for our belief that the robot’s tools are at least biologically-
plausible even if they ultimately prove to be different from those
actually used in the human visual system. It is important in evalu-
ating these provocative claims to keep in mind that no other exist-
ing machine vision system has even come close to approximating
the performance of the human being in even very simple visual
environments. Our machine vision system approximates human
performance very well in relatively complex, naturalistic environ-
ments. Discovering that a system like ours can do this provided us
with some new insights into how a visual system like ours accom-
plishes what it does so well. Finally, explaining how the human
visual system works has been only one of the goals of our work.

It has not gone unnoticed that robots, equipped with the novel
kind of computational visual system described in this tutorial,
will be able to deliver food and supplies in hospitals and trim
grass on lawns at least as well as conventional contemporary
robots can perform such tasks, but conventional robots, unlike
ours, accomplish these tasks by using tools that do not resemble
those used by humans beings. Our robot’s tools do and this
fundamental difference opens up the possibility of having a
machine emulate a wide range of human activities within quite
complex natural environments. This becomes possible because our
machine and human beings perform effective navigations without
measuring absolute distances. Both navigate by constructing a
limited number of accurate representations of 3D shapes. All
other contemporary robots base their navigations on making
many iterative measurements of absolute distances. The simple
visual/gravitational method used by our machine for FGO, 3D
shape and 3D scene recovery probably works so well because
it emulates the method that human beings, and many other
successful animals, honed during the millennia required for their
evolution.
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Appendix A. The recovery of a pair of symmetrical points

Suppose x is a point in a 2D image and it is expressed by
Euclidean coordinates. Its corresponding homogenous coordinates
can be written as

x∗
=

xT 1

T
. (A.1)

SupposeM is a 3 × 3 matrix that consists of the first three column
vectors of a cameramatrix and p4 is the fourth column vector of the
camera matrix. Then all 3D points whose image is x is expressed as
follows (Hartley & Zisserman, 2003)

X = M−1(kx∗
− p4) (A.2)

in which k is a free parameter. Note that X is a vector with the
Euclidean coordinates of a 3D point. Suppose X1 and X2 are a pair
of symmetric 3D points, and their images are x1 and x2. Then from
Eq. (A.2), we obtain

Xi = M−1(kix∗

i
− p4) i = 1, 2. (A.3)

Therefore, to recover the 3D point X1 and X2 from their images x1
and x2, we need to compute k1 and k2 in Eq. (A.3). Suppose the
direction of the line X1X2 is V , then V and the vanishing point of
symmetry lines v∗ must satisfy the following equation

V = M−1v∗. (A.4)
Note that V represents not only the direction of X1X2, but also the
normal of symmetry plane. Therefore, the symmetry plane for X1
and X2 can be expressed as

π =

V T d

T (A.5)
where d indicates the position of the symmetry plane.

X1 and X2 are symmetric with respect to the symmetry plane π
if and only if the following two conditions are satisfied
(1) the line X1X2 is perpendicular to the symmetry plane π ;
(2) the midpoint of X1 and X2 is on the symmetry plane π .

From condition (1), we can derive
X1 − X2 = kvV (A.6)
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where kv is a free parameter. Combining Eq. (A.6) with Eqs. (A.3)
and (A.4), we obtain

M−1(k1x∗

1 − p4) − M−1(k2x∗

2 − p4) = kvM−1v∗. (A.7)

Left multiplying byM both sides of Eq. (A.2), we obtain

k1x∗

1 − k2x∗

2 = kvv
∗. (A.8)

Replacing the homogenous coordinates for x1, x2 and v in Eq. (A.8)
with their Euclidean coordinates, we obtain

k1


x1
1


− k2


x2
1


= kv


v
1


. (A.9)

Eq. (A.9) could be decomposed to two equations

k1 − k2 = kv (A.10)

and

k1x1 − k2x2 = kvv. (A.11)

Replacing kv in Eq. (A.11)with the expression in Eq. (A.9),weobtain

k1(x1 − v) = k2(x2 − v). (A.12)

Eq. (A.11) implies two facts
(a) x1, x2 andv are collinear. Thus, Eq. (A.12),which represents two

linear equations, is redundant.
(b) the ratio between k1 and k2 is proportional to the ratio of the

vectors x2v and x1v.

x1 and x2 are on the same side of v. Otherwise, one of the recovered
points X1 and X2 is behind the image plane. Therefore, Eq. (A.11)
can be written as

k1 |x1 − v| = k2 |x2 − v| (A.13)

where |x1 − v| and |x2 − v| represent the distance from x1 and x2
to v. Eq. (A.13) suggests that the ratio of k1 and k2 is proportional
to the ratio of the distance from two symmetric points to the
vanishing point.

From condition (2), we can derive

X1 + X2

2
V + d = 0. (A.14)

Combining Eq. (A.14) with Eqs. (A.3) and (A.4), we obtain
v∗TM−TM−1x∗

1 v∗TM−TM−1x∗

2

 k1
k2


= 2v∗TM−TM−1p4 − 2d. (A.15)

Combining Eqs. (A.13) and (A.15), we obtain
v∗TM−TM−1x∗

1 v∗TM−TM−1x∗

2
|x1 − v| − |x2 − v|


k1
k2


=


2v∗TM−TM−1p4 − 2d

0⃗2x1


. (A.16)

Appendix B. Estimating the vanishing point on a horizon from
a set of symmetry lines

Let the horizon be expressed as

l∗ =

lx ly lw

T (B.1)

then v∗

0 =

−ly lx 0

T and v∗

1 =

0 −lw ly

T 7 are two

7 If ly is 0, then v∗

0 and v∗

1 represent the same point. For this case, we can set
v∗

1 =

−lw 0 lx

T . If both lx and ly are 0, then l∗ represents the line at infinity
and it is the vanishing lines for the planes that are parallel to the image plane. For
this case, we can set v∗

0 =

1 0 0

T and v∗

1 =

0 1 0

T .
points on the horizon because l∗Tv∗

0 = 0 and l∗Tv∗

1 = 0. Specifically
v∗

0 is a point at infinity on the horizon. Then all points on l∗ can be
expressed as

v∗
= v∗

0 + λv∗

1 . (B.2)
Let l∗1, l

∗

2, . . . , l
∗

k represent the k symmetry lines. Ideally, if all
symmetric lines intersect with the horizon at point v∗, then the
following equations will be satisfied

l∗Ti v∗
= 0 i = 1, 2, . . . , k. (B.3)

Let B =

l∗T1 l∗T2 · · · l∗Tk

T , then Eq. (B.3) is expressed as

Bv∗
= 0⃗kx1. (B.4)

Combining Eqs. (B.2) and (B.4), we obtain

λBv∗

1 = −Bv∗

0 . (B.5)
Therefore, the problem of estimating the vanishing point on the

horizon is changed to finding the optimum value of λ that satisfies
Eq. (B.5) in the least square sense. It follows

λ = ((Bv∗

1)
T (Bv∗

1))
−1(Bv∗

1)
T (−Bv∗

0) (B.6)
or

λ = −
v∗T
1 BTBv∗

0

v∗T
1 BTBv∗

1
. (B.7)

Appendix C. Pseduo code for recovering a 3D scene from a
single 2D image

Objects recover3DScene(Camera camera, Image image)

{
set objects empty;
// compute the horizon line
horizon = camera.calHorizon();
// compute the floor plane
floor = camera.calFloor();
for(i=0;i <image.objnum;++i)
{

// estimate the vanishing point on the
horizon for object i

vanishingPnt = estVanishingPnts
(image.symlines, horizon);

// determine the symmetric
correspondences on symmetric curves

symcorrespond = detSymCorrespond
(vanishingPnt, image.symcurves);

// Recover symmetric correspondences
recsympnts = recSymPnts(camera,

symcorrespond);
// Recover hidden part
rechiddenpnts = recHiddenPnts(camera,

recsympnts, image.planarcurves);
// Scale recovered objects
objects[i] = scaleObjects(floor,

recsympnts, rechiddenpnts);
}

}
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